
The phase diagram of the tight-binding Frohlich polaron

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys.: Condens. Matter 6 6611

(http://iopscience.iop.org/0953-8984/6/33/009)

Download details:

IP Address: 171.66.16.151

The article was downloaded on 12/05/2010 at 20:19

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/6/33
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. F'hys.: Condens. Matter 6 (1994) 66116622. Printed in the UK 

The phase diagram of the tight-binding Frohlich polaron 

Y Upine 
Departement de Physique et Group de Recherche sur la Physique et laTechnd@e des Couches 
Minces, Universit6 de M o n a ,  C P 6128, Succursale ' K ,  Monu6al. Quebec, Canada, H3C 
317 

Received 29 November 1993 

Abstract We consider the ground-state energy of a tight-binding polaron in a polar crystal. 
This system is represented by the FrWich Hamiltonian in which the effective-mass kinetic term 
is replaced by the kinetic energy of an e l e m n  in the IaIIice potential. Also, a Debye cut-off is 
made on the phonon waveveuors. We write this Hamiltonian in a tight-binding representation 
and evaluate an upper bound to its ground-state energy using the Pock approximation of Matz 
and Burkey. This treannent is valid for any coupling smngfh and any degree of adiabaticity. We 
find three possible configurations: a weakcoupling band state, a strong-coupling band slate and 
a self-lrapped stale. The existence of these states depends on the value of two pamnetm: the 
electron-phonon coupling strength and the electronic bandwidth. We also evaluate the limis of 
validity of the continuum approximation for crystals of finite bandwidth by evaluating explicitly 
the corrections to the continuum appmximation. We conclude that for small electmn-phonon 
coupling (U < 2.7) the continuum approximation is very good. that the strong-coupling band 
slate does not exist in real crystals and that ule self-trapped state can be found in narrow-band 
polar materials. 

1. Introduction 

In a wide-band polar semiconductor or insulator, the Frohlich polaron is usually described 
in the continuum approximation [l]. The whole band structure is approximated by a 
unique parabolic conduction band populated with a single electron. The electron-lattice 
interactions are dominated by the electron-longitudinal-optical (Lo) phonon interactions. 
Also the Brillouin zone is considered as unbounded (no Dehye cut-off is applied on the 
phonon wavevectors). This description is valid for a wide conduction band, in which case 
the electron is limited to the bottom of the band and the polaron radius is much larger than the 
lattice parameter. For a nanow band, the electron can probe the whole band and a parabolic 
kinetic energy is clearly a bad approximation. Furthermore, the phonon wavevectors need 
to be limited to the first Brillouin zone to take into account the discreteness of the lattice. 

In a narrow-band material, the bandwidth can be so small that the polaron becomes 
self-trapped [Z] .  The polaron then does not have any kinetic energy. It only has a potential 
energy related to the induced deformation of the lattice. It is called a small polaron. This 
state cannot be obtained in the framework of the continuum approximation. A Debye cut-off 
is essential to describe this state; otherwise, the polaron would become infinitely localized 
because of the absence of a positive kinetic term to counterbalance the trapping energy. 
The discreteness of the lattice is essential to get a finite result:' it forbids the electron to 
localize on a scale smaller than the lattice parameter. 

To describe situations where neither of these asymptotic descriptions is valid and to 
describe the transition between these two states, several approaches have been used. One 
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of these consists in calculating corrections to the continuum approximation used in the 
Frohlich Hamiltonian. This has been done by Lipine and Frongillo [3], using a Debye cut- 
off and the I C .  q representation of Zak [4] and by Paranjape and Panat [5] using a discrete 
lattice model for the polaron. Another approach consists in using a polaron Hamiltonian on 
which the effective-mass approximation has no: been effected. This Hamiltonian is often 
called that of a tight-binding polaron for non-polar electron-phonon interactions. It has 
been extensively studied in the context of small-polaron theories by Holstein 161, Emin [7] 
and Klamt [8] with variational approaches and by de Raedt and Lagendijk [9] who used a 
Monte Carlo approach. In the case of polar interactions, it was first treated by Tiablikov 
and by Yamashita and Kurosawa in the adiabatic limit 1101. Later, LLpine and Frongillo 
treated this Hamiltonian in the non-adiabatic limit [ 111. They find a self-trapped state for 
a narrow-band material with strong electron-phonon interaction and a band state in the 
opposite limit. 

In the present paper, we calculate the ground-state energy of the tight-binding polar 
polaron. The whole problem is treated in a tight-binding basis and a Debye cut-off is 
applied on the phonon wavevectors. An upper bound to this energy is found, using the Fock 
approximation of Matz and Burkey that is known to be valid for any coupling strengths in 
the continuum case (for a wide band) 1121. This treatment is easily applied to the tight- 
binding Hamiltonian, when expressed in the appropriate basis. It leads to the three expected 
types of polaron state: the weak-coupling band state, the strong-coupling band state and 
the self-trapped state. Furthermore, the approach is valid in both the adiabatic and the 
non-adiabatic limits. 

The paper is organized as follows. First, in the next section, we introduce the polaron 
Hamiltonian. We write it in a tight-binding basis. The variational ground-state energy 
is then obtained from the Fock approximation. In section 3, we derive asymptotic limits 
to this energy. These limits lead us to consider the three polaron states described above 
and to derive the values of the parameters for which each of these states has the lowest 
energy. We also give the corrections to the continuum approximation when one considers 
a conduction band of finite bandwidth. In section 4, we present our numerical results as 
phase diagrams. We also present the dependence of the polaron energy on the bandwidth to 
evaluate the size of the corrections to &e continuum approximation. Finally, we conclude the 
paper by summarizing our results and by commenting on the applicability of the continuum 
approximation and on the possibility of observing the three phases in real crystals. 

2. The Hamiltonian and its ground-state energy 

We consider an electron in a polar crystal interacting with a periodic lattice potential W(T) 
and with the longitudinal optical (LO) phonon field. The corresponding Hamiltonian was 
initially proposed by 3ablikov [lo] and discussed later by Upine and Frongillo [3, 111 to 
describe a free electron in a narrow-band polar crystal. The work of Tiablikov was done in 
the adiabatic limit while the latter authors worked in the non-adiabatic limit. In this section, 
we present an approach valid for both limits. As it will be shown, this Hamiltonian is 
general enough to exhibit the following configurations for the polaron: for large bandwidth, 
we find a weak-coupling band (WCB) polaron and a strong-coupling band (SCB) polaron 
while, for small bandwidth, we find a self-trapped (ST) polaron. 

This Hamiltonian has three. parts: an electronic part that describes the motion of the 
electron in a periodic potential (He) ,  a free phonon part (H+) and an electron-phonon polar 
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interaction part that has the Frohlich form (Hi) [13]. It is written: 

H = €& + HQ + & (1) 

where 

This Hamiltonian is written in a trivial adaptation of the usual dimensionless system of 
units: 2m, = f r  = hw = 1. In this system, we have 

and 

In these equations, r and me are, respectively, the position and the bare mass of the electron 
and w is the long-wavelength longitudinal optical (Lo) phonon frequency. &! and br are 
the second quantization operators for phonons of wavevector 1. ae represents the electron- 
phonon coupling constant (defined in the present case with the bare electron mass), & is the 
electron-phonon matrix element of the interaction potential and so is the polaron quantum 
radius, the natural unit of length in the problem. EO and cm are the static and the high- 
frequency dielectric constants, respectively, and Q is the system volume. The sums over 
1 are restricted to the first Brillouin zone because the phonons cannot have wavelengths 
smaller than the lattice parameter. The Brillouin zone is thus approximated by a Debye 
sphere and the phonon wavevectors have to be smaller than L, which is the Debye cut-off 
divided by to [3, 111. 

We first write this Hamiltonian in a one-band tight-binding representation, using tight- 
binding wavefunctions as a basis: 

where @(T) is the atomic wave-function of the level corresponding to the band under 
consideration. This representation can be considered as an approximation of a BIoch 
representation for which the Wannier wave-functions have been replaced by atomic wave- 
functions. Within this tight-binding basis,~the Hamiltonian becomes 

r 

where the Cl and c k  create or annihilate an electron in a tight-binding state k and J is 
the tight-binding transfer integral. H has been obtained in a tight-binding spirit: the matrix 
elements (k1HJk') have been evaluated keeping only the first-neighbour contributions. The 
inmi te  contributions being constants have been discarded and all other contributions are 
neglected. Also the matrix elements of the interaction terms ((kl exp(il- r)lk')) have been 
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evaluated keeping only the intrasite terms that give the most important wntrjbution [Ill. 
Finally the constant term in H+ has been discarded. Also, 

p, = I d 3 .  ei"rl@(r)12 

is the Fourier transform of the atomic charge density and €k is the tight-binding energy of 
an electron in a rigid band and is given by 

h 

h being the position vector of the nearest neighbours. It is important to note that in a 
plane-wave basis, without W ( r ) ,  the above Hamiltonian would reduce to the usual Frohlich 
Hamiltonian [13]. This is also the case for a low-energy electron in a wide band ( J  > ho) 
when the band structure can be approximated by a single parabolic band. 

The ground-state energy of the polaron is now calculated, using the Fock approximation 
of Matz and Burkey [12] that is valid for any electron-phonon coupling strength. Thii 
treatment is easy to use and gives an upper bound to the ground-state energy of the polaron. 
It is also known, for the Frohlich case, to be equivalent to the Feynman approach in the 
rigid-oscillator approximation (the one-particle model) [14]. It gives the well known results 
in the small- and large-coupling limits but also gives upper bounds for intermediate values. 
It is thus valid for any coupling and it will be also shown in the following to be valid 
in the adiabatic limit as well as in the non-adiabatic case (for wide or narrow bands). 
This approximation can easily be applied to the present tight-binding Hamiltonian and the 
following ground-state energy is obtained [12]: 

Erj = / d 3 r  \uo'(T)&(T)~O(T) 

In this equation, &(T) is obtained from ~ k ,  replacing IC by -iV,. (q,,(r)) forms a complete 
variational model spect", the E. being its eigenvalues. The ground-state energy of this 
spectrum has to be the best approximation possible for the polaron wavefunction. 

We now have to choose a model spectrum. In the Frohlich case, one usually chooses 
a Gaussian spectrum [3, 12, 141. The model then consists in a free electron in interaction 
with a harmonic potential. In the present case, we chose to write the Hamiltonian in a 
tight-binding basis. The logical choice for the model is thus that of a tight-binding electron 
bound to a harmonic potential. It corresponds to the eigenvalues and eigenfunctions of the 
following Hamiltonian: 

(9) 
@' being a variational parameter to be determined by minimization. As written, it is not 
possible to solve this Hamiltonian analytically. We thus resort to an expansion of e,+ for 
small values of k. The new model Hamiltonian is thus defined by 

HM = &(T) + ~ ' ~ r '  

where a cubic symmetry has been assumed for the nearest neighbours. Also, we have used 
the following definition of a tight-binding effective mass that is valid for any of the three 
cubic laaices: 

(11) 2 mb = 1 / J h  
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h being the nearest-neighbour distance. This new model is expected to be at its best for 
large bands, in which case the electron is near the bottom of the band. It is also good €or 
a narrow band the electron is then no longer in a band state and the details of the band 
structure and of the model are not very important. The eigenvalues and eigenfunctions of 
this Hamiltonian are used as a model in the following. 

The ground-state energy of the polaron is now obtained by substituting the above model 
spectrum into equation (8). The exact nature of the atomic wave-functions is not important 
here since we are not attempting a detailed band-structure calculation. It is however 
important that these functions decay over a distance of the order of an atomic distance. 
In the present case, for practical reasons, we model @(T) with a Gaussian wave-function: 

where p’-l is chosen to be of the order of the extension of an atomic wavefunction. 
Substituting equations (10) and (12) in equation (8) and defining j3 as p = j 3 ‘ / J ;  mb Pas  
p = L as Le/- and (I = ffe&,~ we obtain 

where erf(x) is the error function. This energy bas to be minimized with respect to B. In 
equation (13), all the lengths are given in units of q, = ro/& and all the wavevectors 
are given in units of 6’: it is thus written in terms of the effective band mass instead 
of the bare electronic mass. This is the same system of units as that used in the Frohlich 
Hamiltonian 1131. We now look at the asymptotic limits of equation (13) to analyse the 
ground state of the polaron. 

3. Asymptotic results 

In this section, we analyse asymptotic limits of equation (13). To get useful results, we 
give the explicit relation existing between the following parameters: p, J and L. First, we 
write the Debye cut-off as [ 111 

Wis Debye cut-off has been chosen such that the volume of the Debye sphere is equal to 
that of a simple cubic Brillouin zone ( ( 2 ~ / h ) ~ ) .  For another lattice, the proportionality 
constant would differ but this relation would have the same form. Using this equation with 
equation (1 l), we get 

We can thus use this relation to write our results as a function of J or, alternatively, of 
L. Also, the parameter p scales with L, both being inversely proportional to the lattice 
parameter, In the following, we thus write 

p = CL. (16) 
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For a narrow band, C is large (the atomic wave-functions are localized). For a wide band, 
it can be slightly smaller than unity. Note that in the continuum limit, h + 0 and that L 
and f i  become infinitely large. 

We first treat the continuum limit. An expansion for large values of J ,  L and p gives 
m 

dt. 
3 
2 

Eo = -65 + -p2 - 
Except for a constant term (-65) that corresponds to the bottom of the conduction band in 
the tight-binding approximation, this is exactly the expression for the ground-state energy 
found by Matz and Burkey [12] using the above formalism on the Frohlich Hamiltonian 
or by Feynman in the rigid-oscillator approximation [14]. n e  corresponding weak- and 
strong-coupling asymptotic energies are the same as the first-order terms of a wide-band 
expansion of equation (13) and are given in the following. 

We now consider the weak electron-phonon limit (the weak-coupling band case (Wa)). 
The electron wave-function is delocalized and p is known to minimize to zero (this can be 
shown by doing a small+ expansion of equation (13) and by minimizing with respect to 
p )  [3, 121. The ground-state energy of the polaron is then given by 

CY w erf[L (t + 1/4/12)'/'] 
Eo = -65 - - 1 e-' dt. 

J ; ? O  (f + 1/4pz)1/2 

For a wide band, L (or a) is large and we get 
01 

Eo = -65 -a+ - 
f i f i  ' 

The first two terms are the usual weak-coupling results of the continuum Frohlich polaron 
while the last term is a correction to the effective-mass approximation. For a narrow band, 
L is small and we find 

2 Eo = -65 - -aL +- 
37 3x 

In this expression, the last term (in P - ~ )  comes from the use of tight-binding wave-functions 
instead of plane waves to calculate the electron-phonon matrix element. The fust term is 
the bottom of the conduction band while the other two give the self-energy of the polaron 
in this narrow-band case. This self-energy is that of a self-trapped polaron from which a 
small correction term in L3 is subtracted to account for the delocalization energy related to 
the band. 

In the strong-coupling limit, for a wide band, p is expected to be large but smaller than 
L or p (p  > 1 and << L, p or a). This case corresponds to a strong-coupling band 
polaron (SCB). We find 

Minimization gives = $,.@?a and 

In this equation, the first two terms are the usual strong-coupling results of the continuum 
polaron in the strong-coupling limit while the last term corresponds to corrections to the 
effective-mass approximation that disappear for an infinitely large band. Note that in this 
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limit, the polaron radius is proportional to p-'. The polaron stays in this state until its 
radius becomes of the order of  the^ lattice parameter (0-l N h or a 2: L. as 0 cx a and 
L cx h). For larger values of a, it becomes self-trapped. 

We now consider the narrow-band case for which we expect to find a localized electron 
(the self-trapped case (ST)). Then, and this is confirmed by numerical calculations, p + CO 
and we find 

Ee=---paerf 2 (k) - (=-% x if @ + C O ) .  (23) 
Jj7 

This is the Coulomb energy of an electronic charge distributed over a volume of the order 
of a unit cell in a medium of dielectric constant given by (e;' - E,, ) . Note that the term 
corresponding to the bottom of a tight-binding band ( - 6 J )  has disappeared, the electron 
being localized on a lattice site. 

It is of interest to derive expressions for~the value of a (ac) at which the ground-state 
energy of two polaron configurations becomes equal. These expressions, being obtained 
from asymptotic limits and being compared outside these l i i ts ,  are expected to give only 
an indication of the value of the parameters involved for each phase. Surprisingly, in most 
cases, the resulting numerical results agree quite well with the numerical calculations. 

First let us consider the transition between the weak-coupling and the self-trapped 
phases. The corresponding energies (equations (18) and (23)) are equal at acl. We get: 

-1 -1 

For a wide band ( J  >> l), this becomes 

(25) ~. 65 
(2/&)CGerf(1/2C)f i -  1 '  

ffd = 

For a narrow band ( J  << 1), and for large values of p (uniform atomic charge density) we 
get 

(26) 

These values a p e  with the numerical calculations (next section) in their respective limits. 
We define olE2 as the value of a for which the polaron passes from a strong-coupling 

band state to a self-trapped state. It is obtained by equating equations (22) and (23). As the 
first state is only found for wide bands, we assume that L and p are large. We then find 

= ,3 f iG  Cerf(ll2C) -JCzerf2(1/2C) - 2/G2 1/5. (27) 

ac2 is thus directly proportional to 8 for J >> 1. This expression, as seen in the next 
section, agrees very well with the numerical calculations. 

Finally, we study the transition between the weak-coupling and the strong-coupling band 
states. This transition occurs at which is obtained by equating equations (19) and (22) 
in the wideband limit (keeping L and p >> 1). We find 

ffa = 3x. (28) 
This value does not agree very well with numerical calculations: we show in the next 
section that, in this limit, the constant is equal to 5.84 instead of 3x as found here. The 
origin of this discrepancy is that near CQ the minimum value of p is such that neither 
equation (21) nor equation (22) is valid. This is well known in the continuum polaron 

[ 1 
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theory and is easily corrected by taking a small-p expansion of equation (13) [15]. We 
now use numerical calculations to explore the whole parameter space and to validate the 
asymptotic expansions. 

4. Numerical results 

The numerical calculations have been done, using equation (13). In this equation, there are 
three independent parameters: 01, J and p. fl is found by minimization and L is related to 
J by equation (15). In the following calculations, 01 and J are varied independently. On the 
other hand, p is proportional to L since it scales with the inverse of the lattice parameter 
(see equation (16)). p-' measures the characteristic length on which an electronic wave 
function of a valence electron decays. In the following, we consider two values for p: 
p = L/2 which is a typical value for a tight-binding solid and p = CO which neglects the 
variations of the electronic density over an atomic distance. This last value is the same 
as that used in the continuum approximation but is not equivalent to this approximation 
since we keep a tight-binding band and a Debye cut-off. This infinite value is used as a 
comparison and because it gives simpler analytical results. As shown later its use does not 
qualitatively change the results. 

EO 

25 
J 

Figure 1. Ground-state energy of the polamn as a function of J ,  for U = 1. 4 and 6. The 
full-drawn C U N ~ S  are for an infinite value of fi while the dotted ones are for fi = LIZ. 

We first look at corrections to the continuum approximation. In figure 1, we plot 
the ground-state energy of the polaron as a function of J, for 01 = 1, 4 and 6 and for 
p = 00 and L/2. On this graph, the energies are expressed with respect to the bottom 
of the conduction band the -65 term has been subtracted. The curves have been plotted 
only when the ground state is a band state. Otherwise, nothing has been plotted. The 
continuum approximation corresponds to the limit of J + CO. We see that a reduction of 
the bandwidth has the effect of reducing the self-energy of the band polaron. This effect is 
more important when the electron-phonon coupling is larger. We note that taking a finite 
value for fi  (p = L/2) results in a larger reduction of the self-energy of the polaron. Also, 
self-trapping occurs for larger values of a: the band state is favoured by a modulation of 
the atomic potential. Note that for most cases of interest ( J  2 I), the corrections are small 
as far as there is no transition to the self-trapped state. 

In figures 2 and 3, we present phase diagrams of polaron states in the a 4  and a-L 
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z o m  _.I.' 

15 

a 
IO 

SCB 

i ................ 
5 .:.' 

WCB 

0 
0 5 i o  15 20 

J 
Figure 2. Phase diagram of the tight-binding polaron in the e-3 plane. The fulldrawn curves 
are for an infinite value of p while Ihe do& ones a for p = L / 2  ST stands for the self-napped 
state, WCB for the weak-coupling band slate and SCE for the strongcoupling band state. 

2OI~ 15 ST 

a 
10 : 

5 ........... 

SCE 

.............. 

WCB 

0 
0 5 10 15 20 

L 

Figure 3. Phase diag"  of the tight-binding polaron in the a-L plane. The full-drawn curves 
are for an infinite value of p while the dotted ones a for f i  = L/2. ST stands for the self-trapped 
state, WCB for the weak-coupling band state and SCB for the strong-coupling band state. 

planes, respectively. These diagrams are obtained by calculating the ground-state energy of 
the polaron (EO) for three cases: Eo(j? = 0) for the weak-coupling band state, E0(+4 -+ CO) 

for the self-trapped state and Eo(p = +4rmn) for the strong-coupling band state. The polaron 
is then assumed to be in the state of lower energy. The transformation from one state to 
another is found to occur abruptly. with a region of coexistence of the two states in the 
neighbourhood of the transition line. In the two diagrams, the full-drawn cuwes result from 
taking the limit p + CO while the dotted curves are plotted for p = L/2. In the upper 
part of these graphs, we find a self-trapped state (ST) while in the lower part, a weak- 
coupling band state (WCB) is found. The intermediate region on the right-hand part of the 
graphs corresponds to a strong-coupling band state (SCB). These graphs correspond well 
to the behaviour described by the asymptotic expressions (equations (X)-(ZK)). the main 
discrepancy being the value of the horizontal line at a = 5.84 which was predicted to be at 
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3x (E 10). 
From these figures, we observe that for a < 2.7 (or 4.5 for f i  = L/2) ,  the polaron is 

in a weak-coupling band state. Above this value, for small bandwidths, the polaron is in a 
self-trapped state. For larger bandwidths ( J  > 5), the polaron passes from a weak-coupling 
to a strong-coupling band state as described by the continuum approximation. For still larger 
electron-phonon coupling, it passes from a strong-coupling state to a self-trapped state. The 
span of the strong-coupling part of the diagram increases rapidly with the bandwidth. Note, 
however, that for real crystals, this strong-coupling part of the diagram cannot be reached 
since we do not know of any wide-band crystal for which or > 6. On the other hand, the 
self-trapped state can be reached in narrow-band polar materials such as metal oxides or 
holes in the alkali halides. 

One point is questionable in the above analysis: we find that changes in the ground- 
state configuration of the polaron happen as abrupt transitions between two states when a 
or J is varied. Also, we find regions in the parameter space for which two energy minima 
can coexist, one corresponding to the ground state of the polaron and one to a metastable 
state. These conclusions depend strongly on our use of a variational approach. As an 
example, it has been shown, in small-polaron theories involving a short-range electron- 
phonon interaction only, that a Monte Carlo calculation does not agree with an abrupt change 
between the band state and the self-trapped state. It predicts a continuous change between 
the two states [SI. However the variational calculations describe correctly the energies of 
the different states, their dependence on the parameters of the problem and the region of 
the parameter space for which each state can be found. In the present case, our conclusion 
is that the above phase diagrams describe adequately the ground-state configuration of the 
polaron for a given set of parameters. However, the lines appearing on these diagrams are 
not necessarily related to an abrupt change of polaron state. Another type of approach, such 
as Monte Carlo calculations, could help in settling this issue. 

5. Conclusions 

In this paper, we study the tight-binding polaron in a polar material. Our purpose is to 
characterize the polaron in cases where the continuum approximation is not valid. This is 
the case when the size of the lattice deformation becomes of the order of size of the unit 
cell. Because of the resulting spatial confinement, the electron increases its kinetic energy 
and the effectivemass approximation is no longer valid. We take care of this aspect by 
going back to the original electronic Hamiltonian involving an electron in interaction with 
a periodic lattice potential. Furthermore, the electron localization cannot be smaller than a 
distance of the order of the lattice parameter. A Debye cut-off takes this effect into account. 
Thus the resulting Hamiltonian has the Frahlich form with two corrections: a Debye cut-off 
on the phonon wavevectors and the addition of the lattice potential. 

This Hamiltonian is then treated in a tight-binding spirit. We first write it in a tight- 
binding representation. Then, we calculate an upper bound to the ground-state energy of 
the polaron using the Fock approximation of Matz and Burkey [12]. The resulting energy 
is valid in both the adiabatic and non-adiabatic limits, for any value of electron-phonon 
coupling constant (or). Well known results obtained from theories based on the continuum 
approximation can be derived as special cases of our formalism, in the wide-band limit. 

Using this formalism, we find the following results. First, for large bandwidths, we 
obtain a polaron behaviour similar to that obtained from the continuum approximation: 
for small electron-phonon coupling, we find a weak-coupling band state consisting of a 
delocalized polaron in a band state while, for larger coupling, we find a strong-coupling 
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band polaron consisting in a polaron with an intemal structure moving in a narrow band. 
For these two states, the corrections to the continuum approximation are found to be small. 
For still larger coupling, when the radius of the polaron becomes of the order of the lattice 
parameter, we find a self-trapped state consisting in a trapped electron whose wavefunction 
is localized on a lattice site. Second, in the opposite limit (for small bandwidths), we do not 
find a strong-coupling band state: the polaron passes directly from the weak-coupling band 
state to the self-trapped state when the electron-phonon coupling increases. These results 
are summarized as phase diagrams in the preceding section. 

From these phase diagrams, we draw the following conclusions concerning the different 
polaron states. In wideband materials, we expect to find weak-coupling band polarons well 
described by the continuum approximation. This is the case of II-V and &VI compounds 
and of elecwons in alkali halides. In this limit, we cannot find any crystal for which a, the 
electron-phonon coupling constant, is larger than six. We thus conclude that the strong- 
coupling band polaron cannot be found in these crystals. This is consistent with previous 
works where the same conclusion was found, within the continuum approximation, using 
the Feynman path-integral formalism [16]. On the other hand, for narrow-band materials, 
one can find larger values for the electron-phonon coupling constant. This is the case for 
electrons in metal oxides and in perovskites. However, because of the small bandwidth, 
the polaron passes directly from a weak-coupling band state to a self-trapped state, as can 
be seen on the phase diagrams (figures 2 and 3). The strong-coupling band state does not 
exist in this limit. We are thus led to conclude that this state cannot be observed at all in 
real crystals. 
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